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1. INTRODUCTION

The presence of critical behavior in statistical mechanical systems is
indicated by the appearance of the so-called long-range order. This means
that for two spins xi, and Xj situated at the points i and j, the two-point
correlation function < x i x j > does not tend to zero when the distance
between i and j tends to infinity. For quantum lattice systems in dimension
v ^ 3 with interaction between nearest neighbour pairs, the appearance of
the long-range order was proved in the papers(1-8) using the method of
infrared domination. In the papers by Glimm, Jaffe and Spencer(9) such a
result was obtained for some two-dimensional continuous systems of
Euclidean quantum field theory with the help of the Peierls argument.(10)

The lattice approximation of the p4(^)2 model is a classical spin system
with unbounded spins situated in the potential field V ( X j ) = P4(Xj), j e Z2

(P4 being polynomial of degree 4) and subject to a two-point nearest
neighbours interaction. It was soon realized, in refs. 11 and 3, that the
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method also works in the case of the unbounded spin systems which
describe an anharmonic quantum crystals. In refs. 11 and 3 nearest
neighbour interaction and reflection positivity are required.

In the present paper we establish the existence of the long-range order
for quantum, lattice systems with unbounded spin and any lattice dimen-
sion. Our assumptions allow non-nearest neighbours interaction between
spins, and do not require reflection positivity. The main tools we use for
the description of quantum systems are the Feynman-Kac(12) formula and
the technique of functional integrals on the periodic path space(13,14) The
proof of the main technical lemma is based on the probability estimate
technique of Ruelle(15) (already used in a related context by Park(16) (see
also ref. 17)).

Let us briefly describe the contents of this paper. In Section 2 we define
the systems we consider. In Section 3 we define our "Peierls framework"
and prove the main theorem. In Section 4 we prove the main technical
lemma, which then leads to the existence of quantum states and to our main
theorem.

2. DEFINITIONS AND NOTATIONS

Let us consider the v-dimensional integer lattice Zv. At each site i of
the lattice there is an unbounded one-component continuous spin xi. This
means that with each site i e Zv we associate a one-particle physical Hilbert
space L2(R, dx i), where dxi is the Lebesgue measure on R.

For each xi e R and each i = (i(1),..., i (v)) e Zv we define the distance
from the origin by the formula:

For each bounded region A <= Zv introduce the notations

and define a local Hamiltonian as given by the operator on JVA
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and

Here A is a real constant that gives the strength of the interaction,
dij = d \ i _ j \ is a function on Zv and sum over (i, j) means sum over all
possible pairs of sites in A. For the function dij we shall assume that there
exist some constants d, D and s > 0 such that

The contraction of the local Hamiltonian in the region A c Zv

corresponds to introducing Dirichlet boundary condition (e.g., ref. 18,
Chapter VII]).

Let us define for any bounded region A c Zv the partition function ZA

and the local Gibbs state a>A(A) by the following formulas

where ft is inverse temperature and A belongs to the algebra of the local
observables (see, e.g., ref. 19).

We define d^A(u>A) as a measure on the ^-periodic continuous path
space Qft

A = C([0, /?]; R), with the help of the conditional Wiener measures:

with the condition «,-(0) = cy,.(/?) = xi. Then (see refs. 13, 16, 17, 20 for
details
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with

3. THE EXISTENCE OF PHASE TRANSITIONS.
PEIERLS TYPE ARGUMENTS

To use a Peierls type argument we should have some kind of a "collec-
tive spin variable" which takes two values + 1 or — 1 (or a "many-compo-
nent spin" in the frameworks of Frohlich(ll) or, in another context, of
Pirogov-Sinai(21)). Following the idea of Glimm-Jaffe-Spencer(9) we define
our "spin variable" as the sign of the mean value of the Wiener loop CO(T),
0 «$ T < y9, i.e.,

As a long-range order parameter we shall consider the two-point
correlation function <(rTiarjyA, where < • >/, is the mean value that is defined
by the following expression:

From Lemma 3.3.2 of ref. 16 we have the existence of the limit correla-
tion function

Let us also remark that because of symmetry w -> — co we have
<0y> =0. Now the main statement of this paper is:

Theorem 3.1. Let the limit measure dvp(ijj} exist for the system
which is determined by Eqs. (2.3)-(2.5). Then for some fined f!, sufficiently
small A > 0 and arbitrary j, k e Zv

which implies the existence of long-range order behavior and of at least
two ground states.
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Proof. We divide the space Rv (which contains the lattice Zv) to
v-dimensional unit cubes which have their centers at the sites of the lat-
tice Zv. There exists thus a correspondence between sites and cubes:
0}j(T)=U)A.(T), j e Aj.

Let A be the set of all cubes A. In every j e Zv (or Aj-ed) some path
u>j(i} (0 < T </?, (Oj(0) = a>j((])), its mean value ^ and "spin" Sj are defined.
The set of all fixed £j, j e Zv defines a configuration a. The boundary r of
the configuration a is the set of those faces of the nearest neighbours A and
A' for which a(A)= —a(A'). It is clear that F consists of different closed
contours ( ( v — 1 )-dimensional surfaces). Let N(F) be the set of those
nearest cubes, the faces of which form F. We define

Then

So, to prove Theorem 3.1 we should prove that for sufficiently small X the
mean value of 3C+9C_ on r.h.s. of (3.4) is less than 1/8, independently of the
choice of A and A'.

By definition of 9C±(A) for any A we have

and for any /!0cZv

Let us write

Using (3.5) and taking into account that %+(A) &_(4) = 0 and SC2
±(A) =

9C±(A\ we pass from the product to the sum over all possible configura-
tions a: A -> +1

Every configuration leads to the decomposition of A0 " + " and " —"
connected components Xi. The boundary F is the union of all connected
contours: F=\J,yl. Let A, belong to the some connected component
Xk( +) and Aj belong to the some connected component Xl( —). Then there
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exists some contour y that divides Ai and Aj such that the sum over all
possible configuration in (3.6) can be represented as the sum over all
possible contours y (which divide Ai, and Aj) and the sum over all possible
configurations for which the given contour y does not change:

Now for every contour y there exists some set of cubes Nr which con-
sists of nearest neighbours (A ' , A") such that

Moreover, for any given y, the sum over a : y(a) = y runs over all different
configurations in A0\Ny but with the restriction that a ( A t ) = + 1 , and
a(Aj)= — 1. If we remove this restriction the sum becomes greater and
using again identity (3.5) for A0\Ny we get the following inequality:

Now we derive an extension of Peierls inequality, which we formulate
in the following

Theorem 3.2. For sufficiently small A and any set of pairs of the
neighbour cubes N(F) the following inequality holds:

Using Theorem 3.2 and the fact that

we obtain

Taking into account that M ^ 2 v and the number of contours with
|y| =n is not greater that 2v(3(2v-1 - 1))n (n /2v) v / ( v - 1 ) , it is easy to obtain
the proof of Theorem 3.1 (following ref. 9).
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Proof of Theorem 3.2. For every pair (A, A') e N(r) we make the
decomposition:

where

Let us estimate all four terms which appears on the r.h.s. of (3.11) after
carrying through the multiplication.

(a) pl = ̂ '+(A)^!_(A') is equal to 1 (i.e., is not equal to 0) if
£ ,2»(l /2) A'1/2 and ̂ .^ -(1/2) A~1/2. Then ^-c^A-"2, and for any
integer even M:

Because of p l ( A , A')^ 1 we obtain the following estimate:

where

For the cases (b)-(d) we can write general estimates using the condi-
tion |£J <( l /2) A-1/2:
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where

Then

The end of the proof of Theorem 3.2 is analogous to ref. 9 (see also
ref. 14). We apply namely the Cauchy inequality for derivatives (in every
variable). Using the boundedness of the mean value we obtain

with

where the first sum is the sum over nearest neighbour pairs and
/11/2 |e| ^ l/4d (here e is one of e,-,- or e,.). B is any finite set B a A c Zv. The
latter statement and the proof of Theorem 3.2 are a consequence of the
main technical lemma:

Lemma 3.1. For any region B<=A, \B\ < GO there exist a constant
c which does not depend on B, A and A, such that for sufficiently small A

where Q(B) is a polynomial of the second degree with respect to the
variables a>j(-t),jeB, defined by (3.13).

Remark 3.1. Lemma 3.1 is a partial case of Lemma 3.2.1 in ref. 16.
The difference between these lemmas lies in the fact that to prove the main
result of the present paper we need more information on the detailed
dependence of the constant c on parameter L The main technical trick,
which allows us to avoid the occurence of large terms of the form 1-1/2 \B\,
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consists in exploiting the transformation properties of Wiener integrals
under translations.

Remark 3.2. Note that c~/?~ a , <x>0. So, if A is fixed, making ft
small we can destroy the long-range order behaviour. |

4. THE BOUNDEDNESS OF QUANTUM STATES AND THE
PROOF OF LEMMA 3.1

For our proof of the bound (3.14) and of Theorems 3.1 and 3.2 we use
methods of refs. 15, 16 (see also ref. 22 for the case of quantum systems)
and refs. 9, 14. Let us remark that in (3.14) we obtain a better constant
than in work of Park (ref. 16, Proposition 2.1). The constant on the right
hand side of (3.14) is proportional to /l - 1 / 2 , which makes it possible to
obtain from it a proof of Theorems 3.1 and 3.2. In addition we avoid the
use of reflection positivity.

We start by recalling some results which originated from ref. 15
(Proposition 2.1). For given a > 0, we can choose an integer p0 > 0 and for
each j^/>0 an integer lj > 0 such that

We use the notation

Then the following lemma holds(15,16) (see also ref. 23):

Lemma 4.1. Let e' > 0, c' > 0, and let \l/ be an increasing positive
function on the positive integers such that

If a is sufficiently small, one can choose an increasing sequence (\l/j) such
that \l/j^-1, \l/j-> oo, and one can fix p>p0 so that the following is true.

Suppose that there exists q such that q ̂  p and q is the largest integer
for which
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n( •) being a function from Zv to the positive integers. Then

Remark 4.1. It is important to realize (see refs. 15, 16) that

where K0 depends only on v and power of decreasing of the function d^_jv

To apply Lemma 4.1 to our situation let us divide the space of all
Wiener paths Q^A into a countable sequence of mutually disjont sets

Let Q(e, B) be defined by

with

Let us remind that using Cauchy's formula in the proof of Lemma 4.2
it is sufficiently to consider the case of real e with |e < 1. Now we apply
two times the Schwarz inequality to the quantity p A ( A 1 / 2 Q ( B ) ) (on the left
side of the inequality (3.14)) with respect to the measure
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Then we obtain

Before estimating pA(2Qt(E, B)) we perform the following translations
in the integral with respect to the measure d^(wA}

to avoid the appearence of the terms which are proportional to / 1/2 \A\.
Then (see ref. 24)

with

As it was shown in the papers(16,17) the proof of the Lemma 3.1 is a
consequence of the following proposition.

Proposition 4.1. Assume that B n [p] / 0 and i e B n [p ] . Then
there exist constants c1 and y, 0 < y < 1 such that

Lemma 3.1 for pA(2Ql(s, B)) follows from the above proposition using
an induction with respect to card(B).

Proof of Proposition 4.1. According to the decomposition (4.1) we
have
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Let i e B^j [p] ^0 for some large p. Then we write

Let

Then it is easy to obtain the following estimate

with a constant K1 that depends only on R0 and /?. Analogously we obtain
the following estimate

with

(see, for instance, refs. 15, 16 or ref. 23, Chapter XVI). Using the Goldon-
-Tompson inequality, one gets
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with K2 which does not depend on A and |e| = 1. So inserting an integration
with respect to d^i(ca,) on the right hand side of (4.9), we obtain with help
of (4.10) and using (4.11) and (4.12)

Using the same procedure we get

Then

In the latter inequality we used Lemma 4.1 with c' and e' which we shall
choose latter. Because

the estimate of the integral

is reduced to the estimate of the integral

Choosing E' < 1/4, we get

with K3 that does not depend on L So
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From (4.13) and (4.16) we get (4.7) with

for sufficiently large c' in Lemma 4.1. So we get the proof of Lemma 3.1 for
pA(2Ql(e, B)). The estimate of pA(4Q2(e, B)} can be done in the same way
if 62(7) is represented,in the form

where P is the operator of orthoprojection in L2[0, /?]:

The translation (4.4) does not change the expression for Q2 and taking into
account that P has unit norm, we get

The term Q3 also is not changed under the translation (4.4) and using the
lower bound of (2.5) the third factor in (4.3) can be estimated in the same
way. Really, the only difference is that instead of one site i e B we should
take two nearest sites i, jeB, (\i — j\ = 1) and therefore estimate the
following integral

The application (2.5) leads again to (4.12) for sufficiently small L |

5. CONCLUSION

Our results imply (see ref. 14) that for a fixed temperature and mass
of the particles we can choose X sufficiently small (i.e. increasing the depth
of the minima of the interaction U and the distances between them) and
obtain at least two pure different phases.



ACKNOWLEDGMENTS

The authors A.Yu.K. and A.L.R. gratefully acknowledge the Research
Center BiBoS, Bielefeld University for the kind hospitality, and A. Verbeur
and N. Angelesku for some critical remarks. We would like to thank Yu.
G. Kondratiev for many most stimulating and useful discussions. The
special thanks for referees for valuable critical remarks which help to avoid
many discrepancies. The research described here was supported in part by
German-Ukrainian Collaborative Project "Eukldische Gibbs Zustande"
No. X271.7.

REFERENCES

1. J. Frohlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous
symmetry breaking, Commun. Math. Phys. 50:79 (1976).

2. F. Dyson, E. Lieb, and B. Simon, Phase transitions in quantum spin systems with
isotropic and nonisotropic interactions, J. Stat. Phys. 18:335 (1978).

3. W. Driesler, L. Landau, and J. F. Perez, Estimates of critical lengths and critical tem-
peratures for classical and quantum lattice systems, J. Stat. Phys. 20:123 (1979).

4. L. A. Pastur and B. A. Khoruzhenko, Phase transitions in quantum models of rotators
and ferroelectrics, Theor. Math. Phys. 73:1094 (1987).

5. V. S. Barbulyak and Yu. G. Kondratiev, Functional integrals and quantum lattice
systems: Phase transitions, Reports Nat. Acad. Sci. of Ukraine 10:19 (1991).

6. V. S. Barbulyak and Yu. G. Kondratiev, The semiclassical limit for the Schrodinger
operator and phase transitions in quantum statistical mechanics. Fund. Anal. Appl. 26:124
(1992).

7. Yu. G. Kondratiev, Phase transitions in quantum models of ferroelectrics, in Stochastic-
Processes, Physics and Geometry II (World Scientific, Singapore/New Jersey, 1994),
pp. 465-475.

8. A. Yu. Kondratiev, Phase transitions in quantum models of ferromagnetics. Approach
with using the functional integrals, Reports Nat. Acad. Sci. of Ukraine 6 (1996).

9. J. Glimm, A. Jafie, and T. Spencer, Phase transitions for <p\ quantum fields, Common.
Math. Phys. 45:203 (1975).

10. R. Peierls, On Ising's model of ferromagnetics, Proc. Cambridge Phil. Soc. 32:477 (1936).
11. J. Frohlich, Phase transitions, Goldstone bosons and topological superselections rules,

Acta Physica Auslriaca, Suppl. XV, 133-269 (1976).
12. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill,

New York, 1965).
13. S. Albeverio and R. Hoegh-Krohn, Homogeneous random fields and statistical mechanics,

J. Fund. Anal. 19:242 (1975).
14. J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View (Springer-

Verlag, New York, 1982).
15. D. W. Ruelle, Superstable interaction in classical statistical mechanics, Common. Math.

Phys. 18:127 (1970).
16. Y. M. Park, Quantum statistical mechanics of unbounded continuous spin systems,

J. Korean Math. Soc. 22:43 (1985).
17. Y. M. Park and H. J. Yoo, Uniqueness and clustering properties of Gibbs states for classi-

cal and quantum unbounded spin systems, J. Stat. Phys. 80:223 (1995).

Long-Range Order Behavior of Quantum Lattice Systems 1151



18. B. Simon, The P(<j>)2 Euclidean (Quantum) Field Theory (Princeton, New Jersey, 1974).
19. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I,

II (Springer-Verlag, New York/Heidelberg/Berlin, 1981).
20. V. S. Barbulyak and Yu. G. Kondratiev, Functional integrals and quantum lattice

systems: Existence of Gibbs states, Reports Nat. Acad. Sci. of Ukraine 8:31 (1991).
21. S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Them. Math.

Phys. 25:1185 (1975); 26:39 (1976).
22. R. Esposito, F. Nicolo, and M. Pulvirenti, Superstable interactions in quantum statistical

mechanics: Maxwell-Boltzmann statistics, Ann. fnst. Henri Poincare XXXIV:127 (1982).
23. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of

Classical Statistical Mechanics: Continuous Systems (Gordon & Breach, London, 1989).
24. J. Ginibre, Some applications of functional integration in statistical mechanics, in Statisti-

cal Mechanics and Quantum Field Theory, C. De Witt and R. Stora, eds. (New York,
Gordon & Breach).

1152 Albeverio et al.


